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ABSTRACT 
 
 
Radar polarimetry is a relatively recent development seeing active 

research only in the last few decades. The phenomenon that optimal (maximal 

power) reflected fields may exist in both the co-polarized and cross polarized 

channels of the receiving radar antenna was first introduced by Kennaugh and 

Huynen. Current research efforts focus on target scattering matrices relating 

physical attributes of the target that bring about depolarization of the scattered 

field so as to identify the various scattering mechanisms and to enhance target 

identification and detection. 

This thesis provides a comprehensive survey of the polarimetry theories 

that have been put forth by various researchers to characterize, manipulate and 

optimize target radar returns via polarization states. These polarimetry theories 

include matrix representations of polarization, the various vector representations 

(Jones, Sinclair, Stokes, Mueller etc.) and their usefulness. This thesis also 

examines the Target Decomposition (TD) theorem that seeks to decompose the 

target returns into individual scattering mechanisms so that these returns can be 

attributed to physical characteristics of the target. Lastly, the topic of optimization 

of polarization states for maximizing power return is also examined. 

Two separate models are implemented in Matlab to verify and 

demonstrate this polarimetry theory. The first model uses TD theorems to 

simulate foliage clutter and study its effect on the polarization of the incident 

electric field. As part of this analysis, a (simulated) static dihedral target is 

introduced and its effect on wave polarization is also simulated. The second 

model was constructed to study optimization of polarization states. This model 

takes the target scattering matrix as an input and creates all possible polarization 

states of incident waves to interact with this target. It then graphs the 

backscattered power in the co-polarized and cross-polarized channels. Both 

models are able to produce the expected results for known canonical targets.  
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I. INTRODUCTION  

Radar polarimetry is a promising area of research - especially when 

remote sensing applications in Synthetic Aperture Radar (SAR) are considered. 

Traditionally, radars transmit and receive waveforms in the same polarization 

state. The measured data include the amplitude, frequency, and the differential 

phase of the received wave as compared to the transmitted wave. 

However, when a propagating EM wave strikes a dielectric or a 

conducting medium, the discontinuity of the scatterer will generally act to 

depolarize the EM wave, possibly resulting in a completely opposite sense of 

polarization state of the scattered wave to which the radar receiver may be blind. 

All information (amplitude, frequency and phase) in the orthogonal polarization 

state of the back scattered wave will then be lost. The concept of depolarization 

can be illustrated with the example of a wire. A polarized electric field that is 

incident on the wire will induce currents along the wire and these currents will in 

turn re-radiate energy that is polarized in the direction of the wire. As illustrated in 

Figure I-1, the scattered wave now has a Ex component that does not exist in the 

incident wave. If the incident electric field is orthogonal to the direction of the 

wire, one would not expect a scattered wave since no currents are induced. 

Hence the polarization of the scattered electric field is dependent on the 

geometry or orientation of the wire.   

 
Figure I-1 Example of a wire depolarizing an incident electric field and 

scattered wave polarized in the direction of wire, with components in the x and y 
directions 

Vertically polarized 
incident wave 

Wire 

Scattered wave polarized in 
direction of wire, with components 
in x and y direction

Ex

Ey
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A polarimetric radar has two receiving antennas with orthogonal 

polarization states. The emitted EM wave is scattered by the target and 

measured by both receivers so that both co-polarized and cross-polarized signals 

are determined. These measurements provide information about the physical 

attributes of the target. Polarization detection may also allow detection of some 

stealthy targets that can completely depolarize the transmitted wave, resulting in 

a null co-polarized power and a maximized cross-polarized power.  

 

A. RECENT RESEARCH AND DEVELOPMENTS  
The basic principles of radar polarimetry are based on the concept of 

characteristic polarization states first introduced by Kennaugh [1], who 

demonstrated that there exist radar polarization states for which the radar 

receives maximum or minimum power and how these states can be optimized. 

Hence the backscatter power of the target depends on the polarization state of 

the incident electric fields. Many techniques have been developed to determine 

the optimal polarization state and involve manipulation of the target scattering 

matrices. The results are usually expressed in terms of the power received by the 

cross-polarized and the co-polarized channels and illustrate the importance of a 

full polarimetric data set for deriving target information. 

Kennaugh’s work was followed by Huynen’s [2] study of how targets 

geometrical properties and physical structure can be determined by their back 

scattered polarization states. Current researchers, including Boerner and Cloude 

[1], [2], [4] & [5], have expanded on the concept of Target Decomposition 

theorems that serve to extract information about the target. The main idea is to 

express the average scattering matrix for a random medium as a sum of 

independent elements and to associate a physical scattering mechanism with 

each of these independent elements. These research efforts also aim to integrate 

multi-polarization data into multi-temporal, multi-frequency data of SAR 

interferometry (POLINSAR) so as to achieve greater target resolution, clutter 

suppression and increased detection probability. 
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The following C-band images of agricultural fields demonstrate the 

dependence of the radar’s response to polarization (Figure I-2). The top two 

images are like-polarized (HH on left, VV on right), and the lower left image is 

cross-polarized (HV). The lower right image is the result of displaying these three 

images as a color composite (in this case, HH - red, VV - blue, and HV - green). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I-2 Illustration of how different polarizations (HH, VV, HV & color 

composite) bring out different features in an agricultural scene [9]. (In the color 
plot, HH is red, VV is blue and HV is green) 

In terms of actual applications, Table 1 gives some of the current 

developments or missions employing polarimetric radars in remote sensing. 
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Table I-1 Polarimetrc Radars 

Mission Application Polarization 

JPOLE Weather radar by NSSL - 

SIR-C Remote Sensing on Satellite HH,HV,VV,VH 

ALOS Remote Sensing on Satellite HH,HV,VV,VH 

 
 

B. THESIS OUTLINE 
This thesis seeks to examine and verify the polarization concepts and 

models put forth by the current researchers. The author will make use of the 

following polarimetry theories: 

1. Electromagnetic wave propagation and polarization; 

2. Various scattering matrices of man-made or natural objects and 

their relationship to the physical geometries of these objects; 

3. Target decomposition (TD) theorems and their basis in scattering 

physics. TD theorems will be used to introduced physical variations 

into scattering matrices; 

4. Optimization of polarization states for various target scattering 

matrices in response to various incident electric fields. Polarization 

optimization results in maximal/minimal power received by the 

receiving antenna, in both the co- and cross- polarized channels 

and this is unique for each target. 

Theoretical analyses of the above research subjects will be conducted using 

Matlab codes to investigate the behavior of various targets. The analysis will be 

conducted primarily based on TD theorems and polarization optimization, 

respectively. To demonstrate the TD theorems, the scenario of a stationary 
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dihedral scatterer and other canonical targets hidden in foliage clutter will be 

examined and polarimetry will be employed as the primary tool for target 

detection. To examine polarization optimization, an analytical technique used 

currently to determine optimal polarization states will be implemented in Matlab. 

The resulting model will be able to generate the optimal polarization states for the 

incident electric field for a given input target resulting in maximized/minimized 

power in the co-polarized and cross-polarized channels. 

Chapter II will address the behavior of EM wave propagation and 

interaction with surfaces. Here we will illustrate the idea of depolarization from 

interaction between the EM wave and the scatterer due to the physical attributes 

of the scatterer. 

Chapter III illustrates the various concepts used in Polarimetry Theory. 

These include tools used to determine the polarization states of scattered EM 

waves due to interaction with natural or man-made scatterers and their 

theoretical basis. 

Chapter IV describes the details of the theoretical analyses conducted and 

implemented in Matlab. This chapter concludes with the modeling results and 

their analyses.  
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II. ELECTRMAGNETISM & POLARIZATION 

A. MAXWELL’S EQUATIONS 
James Clerk Maxwell (1831-1879) put together the laws of 

electromagnetism in the form of four equations based on theories comprising 

previously known experimental and theoretical results. These are given in Table 

II-1. Most importantly, he introduced the concept of electromagnetic waves and 

the physics that govern their propagation.   

Table II-1 Maxwell’s Equations [16]  
 
 

 . vD ρ∇ =    
S

D dS dυ
υ

ρ υ⋅ =∫ ∫    (2.1) 

0B∇⋅ =    0
S
B dS⋅ =∫     (2.2) 

BE
t

∂
∇× = −

∂
   

L S

E dl B dS
t
∂

⋅ = − ⋅
∂∫ ∫    (2.3)  

DH J
t

∂
∇× = +

∂
  ( )

L
S

DH dl J dS
t

∂
⋅ = + ⋅

∂∫ ∫   (2.4) 

Assuming a time factor of j te ω−  and noting that B Hµ= , J Eσ= ; and taking the 

curl of both sides of the differential form of (2.3) gives 

E j Hωµ∇×∇× = − ∇×     (2.5) 

2( ) ( )E E j j Eωµ σ ωε∇ ∇⋅ −∇ = − +    (2.6) 

    2 2 0E Eγ∇ − =      (2.7)  

where 

2 ( )j jγ ωµ σ ωε= +      (2.8) 

Differential Form Integral Form 
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and γ  is called the propagation constant. Note that the j te ω−  disappears because 

it is associated with every term and therefore factors out, resulting in time 

independent equations. By a similar process, it can be shown for the magnetic 

field, H, that 

2 2 0H Hγ∇ − =     (2.9) 

Equations (2.7) and (2.9) are known as the Helmholtz equations. The solution to 

the first equation gives the electric field propagation equation. We can assume 

that the wave propagates along the +z direction and that E has only an x-

component, then 

( )xE E z=      (2.10) 

Substituting into equation (2.7) gives 

2 2

2
2

2

( ) ( ) 0

( ) 0

x

x

E z

d E z
dz

γ

γ

∇ − =

⎡ ⎤
− =⎢ ⎥

⎣ ⎦

    (2.11)  

Finally, realizing that this is a linear homogeneous differential equation, we can 

insert the time factor and obtain the final solution as follows: 

0( , ) cos( )zE z t E e t kzα ω−= −     (2.12) 

where 0E  is a scalar constant, α is the attenuation constant, ω  is the angular 

frequency and k  is the phase constant or the wave constant. Equation (2.12) is 

the electric field vector that defines the propagation of the electric field.  

The magnetic field H is related to the E-field and follows by a similar 

argument. In a different (but equivalent form), we write 

( )
0( , ) Re( )z j t kzH z t H e eα ω− −=     (2.13) 

0 cos( )
| |

zEH e t kzα ω δ
η

−= − +     (2.14) 
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where η  is the intrinsic impedance and may be complex. This complex nature of 

η  introduces a phase difference δ  between E and H fields (note that this is a 

phase difference, assuming E-field has zero absolute phase). In free space, the 

E-field, H field and the direction of wave propagation are all orthogonal to each 

other and can be represented as in Figure II-1. 

 

 
 
 
 
 
 
 

Figure II-1 Electromagnetic Wave Propagation in Free Space 
 
B. WAVE PROPAGATION AND POLARIZATION 

Having defined the electric and magnetic field vector, we now turn our 

attention to the interaction of EM-waves with various media. The relative 

amplitude of the incident, reflected and transmitted waves depends on the 

constitutive parameters of the two media involved, i.e. the permeabilityε , 

permittivity, µ  and the conductivity, σ . Objects that tend towards conductors 

reflect most of the incident wave energy, while objects that tend towards lossy 

dielectrics absorb larger portions of the incident energy. 

In addition to energy reflection and transmission, the waves can become 

depolarized so that the polarization state of the incident wave differs from that of 

the scattered wave. Hence the resultant state of the scattered wave depends on 

the polarization of the incident wave as well as the parameters of the reflecting 

medium. We discuss the elements of wave propagation in the following sections. 

 
 

H 

E 

Direction of wave 
propagation, z 
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1. Polarization  
Consider an EM wave propagating out of the page and situated at the 

origin of an x-y axis system, as shown in Figure II-2. The E-field is represented 

by the vector shown and varies continuously in magnitude and changes direction 

every half-period according to the sinusoidal behavior described in Section II.A. 

The components of the E-field in the x-y directions are: 

( , ) ( , ) ( , )x yE z t E z t E z t= +     (2.15)  

0( , ) cos( )x x xE z t E t kzω δ= − +    (2.16) 

0( , ) cos( )y y yE z t E t kzω δ= − +    (2.17) 

 

 

 

 

 

 
Figure II-2 Representation of instantaneous E-vector 

Examining the two components Ex and Ey, shows that the sum of two sinusoidal 

waves traces an ellipse. Their mathematical relationship is described in the 

following equation of an ellipse: 

22
2

0 0 0

2 cos sinx y yx

x x y oy

E E EE
E E E E

δ δ
⎛ ⎞⎛ ⎞

− + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
   (2.18) 

where y xδ δ δ= − , is the phase difference between Ex and Ey. 

Depending on the parameters of the ellipse equation, the E-vector may be 

reduced to the special cases of linearly polarized (as in Fig II-2), circularly 

polarized and the most general case being elliptically polarized. Linear 

polarization occurs when the two orthogonal components Ex and Ey are in phase 

and so the direction of the linear polarization depends on the relative amplitude 

y 

x 

E 
Ey 

Ex 
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of the two components. Circular polarization occurs when the two orthogonal 

components have the same amplitude but are exactly ninety degrees out of 

phase. All other cases (with the two components not in phase and not having the 

same amplitude) are elliptical polarizations. 

 

 

 

 

 

 

 

Figure II-3 Illustration of (i) Linear, (ii) Circular and (iii) Elliptical Polarization[19] 
The polarization ellipse is a common representation of the state of 

polarization. The tilt angle, ϕ  of the ellipse is obtained from 

0
2 2

2 cos
tan 2 x oy

ox oy

E E
E E

δ
ϕ =

−
    (2.19) 

The ellipticity angle, τ  is simply derived from the major and minor axes of the 

ellipse as follows, 

tan Minor axis
Major axis

τ =      (2.20) 
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Figure II-4 The Polarization Ellipse 

From Mott [11], the wave can also be characterized by more tractable 

mathematical terms using the polarization ratio, which is a complex number, 

shown here with its relation to the polarization ellipse parameters [1] 

0

0

tan tantan
1 tan tan

y y i j

x x

E E
P e e

E E j
δ δ ϕ τϕ

ϕ τ
+

= = ⋅ = =
−

   (2.21) 

For a circularly polarized wave, the EM wave is a sum of equal amplitude 

left-hand polarized and right-hand polarized components, LE  and RE . The 

polarization, after some manipulation, is then [11]  

1
1

L

R

E jPq
E jP

−
= =

+
    (2.22) 

Using a modified polarization ratio, p jP= , we then obtain, 

1
1

1
1

pq
p

qp
q

−
=

+

−
=

+

    (2.23) 

The various representations provide varying degrees of ease in 

representing the polarization of a propagating wave and are also utilized for more 

Ey 

Ex 
E0x 

E0y 

ϕ

τ
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complex types of representations, e.g. the Poincarē sphere. A more in-depth  

treatment of polarimetry theory and its applications to radar detection will be 

given in chapter III. 

 

2. Wave Reflections from Smooth Flat Surfaces 
Using a plane incident wave to illustrate smooth surface reflection, the 

reflected wave is also a plane wave and this is known as specular reflection. The 

electric field of the reflected wave will depend on the polarization of the incident 

wave. It is convenient to assume that the incident wave has two components, as 

before. One component, EiV, is the “vertically” polarized component and the 

other, EiH is the “horizontally” polarized component. This is illustrated as follows. 

 

Figure II-5 Plane wave Reflection from a Smooth surface (parallel polarization) 
 
The reflected components are related as follows [13] 

rV V iV

rH H iH

E E

E E

= Γ

= Γ
     (2.24) 

where Γ  is the reflection coefficient and depends on polarization of the incident 

wave. The polarization of the incident wave will have components parallel or 

perpendicular to the plane of incidence and it is convenient to express the 

associated reflection coefficients separately as //Γ  and ⊥Γ . These coefficients 

are defined as 

Medium 1 
Medium 2 

EiV 

EiH 
ErV 

EiH 

iθ rθ
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2 1
//

2 1

2 1

2 1

cos cos
cos cos

cos cos
cos cos

t ir

i t i

i tr

i i

H
H

E
E t

η θ η θ
η θ η θ

η θ η θ
η θ η θ⊥

−
Γ = =

+

−
Γ = =

+

   (2.25) 

where η  is the intrinsic impedance. This expression shows clearly the 

dependence of wave reflection on material properties and wave polarization. 

 

3. Composite Reflections 
For smooth but irregular surfaces, each part of the incident wave 

corresponds to reflections in different directions. As a result a divergence factor 

D , suggested by Kerr (1964) [13], needs to be included in the derivation of the 

reflected E-field. 

In the case of a rough surface, the irregularities can be thought of as 

fluctuations about an “average” flat value and such surfaces can still reflect 

waves in a specular manner. Rough surfaces can be modeled by assuming a 

Gaussian variation of surface height and have a roughness (loss coefficient) of 

[13], 

2
2exp 8 sinrms

s
hπρ θ
λ

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

   (2.26) 

where hrms is the standard deviation of the height variations about the average 

flat surface and θ  is the incident angle. 

By combining results of the preceding sections, we may determine 

magnitude and phases of the reflected fields when reflections occur from a rough 

spherical surface, as [13]: 

rV V s iV

rH H s iH

E D E

E D E

ρ

ρ

= Γ

= Γ
    (2.27) 
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C. RADAR CROSS SECTION (RCS) σ  
The radar cross section is the portion of the back-scattered power 

corresponding to the particular polarization of the receiving antenna. Thus, 

2lim 4

arg
R

power per unit area in scattered
wave at receiving antenna
which is in the polarization of
receiving antenna

R
power per unit area in
wave incident on t et

σ π
→∞

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭=

⎧ ⎫
⎨ ⎬
⎩ ⎭

 

This definition implies that only the portion of the scattered wave at the receiving 

antenna that has the same polarization of the antenna is used in defining σ . 

Since the receiving antenna may have any specified polarization, the definition of 

σ  of any arbitrarily polarized scattered wave should be divided into two parts – 

one to which the radar responds and the other that is orthogonal to the first. 

We define the E-field scattered by the target and returning to the receiving 

antenna (in cylindrical coordinates) by the sum of components 

ˆ ˆ
S

E
E E E

E
θ

θ φ
φ

θ φ
⎡ ⎤

= + = ⎢ ⎥
⎣ ⎦

   (2.28) 

Figure II-6 gives the geometrical relation between the target and the receiver and 

the definitions of the various parameters. 

 

Figure II-6 Scattering Geometry 

Target  

z 

x 

R
Receiver 

z 

x y 

y 

φ

φ

 θ  
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Using matrix notation and defining Q as the polarization ratio [13], which 

carries the polarization information of the EM wave and is analogous to P for the 

case of plane waves, 

E
Q

E
φ

θ

=     (2.29) 

the E-field becomes, 

1
SE E

Qθ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    (2.30) 

Next we define the scattered E-field, sE  as a composition of polarized 

states, AE , having an arbitrary but specified polarization and, BE  that is 

orthogonal to AE . These components are represented as [13] 

 

1 1 1

2
2 3

3

1ˆ ˆ

ˆ ˆ

A A
A

B

S A B

E A AQ A
Q

A
E A A

A

E E E

θ φ

θ φ

⎡ ⎤
= + = ⎢ ⎥

⎣ ⎦

⎡ ⎤
= + = ⎢ ⎥

⎣ ⎦

= +

   (2.31) 

where 1A , 2A  and 3A  are parameters to be defined so that the above is true, and 

1 0A ≠  is assumed. AQ  is the polarization ratio based on the polarization of the 

receiving antenna. Since AE  is orthogonal to BE , the following condition must be 

satisfied: 

[ ]
*

* *2
1 1 2 3*

3

1 ( ) 0A B A A
A

E E A Q A A Q A
A
⎡ ⎤

• = = + =⎢ ⎥
⎣ ⎦

  (2.32) 

Using equation (2.32) and (2.31) to solve for 1A , 2A  and 3A , we obtain the 

following expressions, 



17 

*

1 2

*

2 2

3 2

(1 )
1

( )
1

( )
1

A

A

A A

A

A

A

E Q QA
Q

E Q Q QA
Q

E Q QA
Q

θ

θ

θ

+
=

+

− −
=

+

−
=

+

    (2.33) 

This result shows that any arbitrarily backscattered wave can be 

decomposed into the sum of 2 waves, AE  and its orthogonal component BE , to 

which the receiving antenna can respond. The power density in the wave 

component AE , which will be received by the antenna is then, 

Power density in 
222 *

2

1
2 2 (1 )

AA
A

A

E Q QE
E

Q
θ

η η

+
= =

+
   (2.34) 

We can express σ  in terms of the polarization ratios and as a function of 

the total scattered RCS, sσ . 

2 2

2 2

2 2
22 2

2 2

22 2 *
2 2

2 2 2

lim 4 lim 4 (1 )

1
lim 4 lim 4

(1

s
s R R

i i

AA

R R
i i A

E E
R R Q

E E

Q QE E
R R

E E Q

θ

θ

σ π π

σ π π

→∞ →∞

→∞ →∞

= = +

+
= =

+

  (2.35) 

Finally, we obtain, 

2*

2 2

1

(1 )(1 )

s pol

A
pol

A

Q Q

Q Q

σ σ ρ

ρ

=

+
=

+ +

   (2.36) 
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polρ  is known as the polarization efficiency or polarization match factor [11], 

having a range of 0< polρ <1. The polarization match factor shows how well a 

receiving antenna is matched in polarization to an incoming wave. It can be used 

to study scenarios whereby the polarizations of the transmitting and the receiving 

antennas are different. 

 

D. THE RADAR SYSTEM  
This section will describe the operation of a radar system using some of 

the aforementioned theories. 

 

1. The Radar Signal Waveform 
Similar to the EM wave, the radar signal waveform takes the form of a 

time-varying sinusoidal wave that may be represented as [10], 

0 0( ) ( ) cos[ ( ) ]s t a t t tω θ φ= + +     (2.37) 

where a  gives the amplitude, ( )tθ  is the phase term, 0φ  is a arbitrary phase 

angle and 0ω  is the carrier frequency. Usually, the carrier frequency is removed 

before signal processing. Hence, amplitude, phase and frequency modulation are 

directly related to these parameters. The (modulus of the) Fourier transform of 

the radar signal gives the spectrum of the signal. 

The signal waveform is often defined over the time interval for which the 

radar signal is pulsed. A pulse train of waveforms is illustrated in Figure II-7, with 

the pulse width and the pulse repetition interval (PRI) defined graphically. 

 

 

 

Figure II-7 Pulse train 
 
 

PRI 
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The average peak transmitted power is given by, 

2 ( )
2t

a t
P =      (2.38) 

The average power is then, 

av tP P
T
τ

=      (2.39) 

where τ  is the pulse duration and T  is the integration time. 

 

2. Radar Equation [10] 
The power transmitted by the radar antenna is first assumed to be 

radiated spherically, and the power density at a distance R from the radar is then, 

24
tP
Rπ

      (2.40) 

where tP  is the power output by the transmitting antenna. 

Taking into consideration a directional antenna in order to increase power 

density in a certain direction, the power density is multiplied by a directive gain, G 

that is usually a scalar function of the direction angles. 

24
tPG
Rπ

      (2.41) 

The radiated power is then incident on the target and the reflected amount 

is determined by the RCS, σ . The reflected power is re-radiated spherically from 

the target and σ behaves like an “antenna gain”. 

2 24 4
tPG
R R

σ
π π

⋅      (2.42) 

The reflected power is then intercepted by the radar antenna, with effective area 
2

4e
GA λ
π

= , and so the final power received is, 

   
2 2

2 2 3 4(4 ) (4 )
t t

t e
PG PGP A

R R
σ λ σ

π π
= =     (2.43) 
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In practical situations, the returned signals received by the radar will be 

corrupted by thermal noise, 

iN kTB=      (2.44) 

where k  is the Boltzman’s constant, T  is the effective temperature and B is the 

bandwidth (equal to 1/τ ). In order to derive the Signal-to-Noise-Ratio (SNR), we 

let the power received be the minimum detectable signal by the radar, minS . The 

quantities minS , iN  and SNR  are related by a radar figure of merit, F , the noise 

figure. 

min ( )S kTBF SNR=     (2.45) 

Finally, the radar equation describing the SNR  becomes, 
2 2

3 4( )
(4 )

tPGSNR
kTBFLR
λ σ

π
=    (2.46) 

 
where L  denotes the radar losses [10]. 
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III. POLARIMETRY THEORY 

A. JONES VECTOR 
The Jones vector is introduced as a matrix representation of the 

polarization state of the electric field. The Jones vector that represents a 

polarization state can be decomposed into any orthogonal polarization basis.   

Using the definitions in equation (2.15), a propagating EM wave E(z) is 

represented as a sum of its components in the x and y directions. Because these 

components oscillate with the same frequency for the monochromatic case, we 

can suppress the temporal term, exp( tjω ) and the equation becomes, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −

y

x

j
y

j
xjkz

eE
eE

ezE δ

δ

||
||

)(     (3.1)  

Furthermore, as the wave is planar, the magnitude of the electric field E(z) 

is the same at every point of its propagation. Hence we may set z=0 for 

convenience and the equation is further reduced to, 

   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

y

x

j
oy

j
x

eE
eE

EE δ

δ

||
||

)0( 0
0     (3.2) 

The vector E(0) is called the Jones vector of the wave. The amplitude and 

phase of the complex components of the electric field are completely defined by 

this vector. 

 

1. Ellipticity Definitions 
Once again, we can define the phase difference between the components 

of the field as xy δδδ −= . Then from the Jones vector, we can determine the 

information necessary to construct the polarization ellipse [8]. 
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The tilt ϕ  is  

δϕ cos
||||

||2
2tan 22

yx

x

EE
E
−

=    (3.3) 

The ellipticityτ  is  

22

2
sin 2 sinx y

x y

E E

E E
τ δ=

+
    (3.4) 

The magnitude of the wave is 

22
0 |||| yx EEE +=     (3.5) 

Conversely, the Jones vector can also be derived from the polarization 

ellipse using the general equation  

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
= −

τ
τ

ϕϕ
ϕϕδ

sin
cos

cossin
sincos

),( j
AeE j

yx    (3.6) 

 
2. Polarization States 
The Jones vector conveniently describes many different polarization 

states – especially when further simplification is performed. The phase xδ  is set 

to zero as a reference, so that δδ =y . Then the Jones vector can be expressed 

in the form [12]:   

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= δδ ij

y

x

be
A

eE
E

E
0

0
0     (3.7) 

Using Euler’s formula we write 

   iCBjbbei +=+= )sin(cos δδδ    (3.8) 

so that the Jones vector for this case is 

⎥
⎦

⎤
⎢
⎣

⎡
+

=
jCB

A
E0     (3.9) 
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This form of the Jones vector is completely general and represents all 

polarization states through variations of the parameters A, B and C. A normalized 

form exists whereby the Jones vector is divided by 222 CBA ++ .  

 Table III-1: Jones Vectors for Some General Polarization States [12] 

General Linear 

Polarization ⎥
⎦

⎤
⎢
⎣

⎡
=

θ
θ

sin
cos

0E  

 

Vertical Linear 

Polarization ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

0E  

 

Horizontal Linear 

Polarization ⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

0E  

 

Left Circular 

Polarization ⎥
⎦

⎤
⎢
⎣

⎡
=

j
E

1
2

1
0  

 

Right Circular 

Polarization ⎥
⎦

⎤
⎢
⎣

⎡
−

=
j

E
1

2
1

0  

 

Left Elliptical 

Polarization ⎥
⎦

⎤
⎢
⎣

⎡
+++

=
jCB

A

CBA
E

2220
1  

 

Right Elliptical 

Polarization ⎥
⎦

⎤
⎢
⎣

⎡
−++

=
jCB

A

CBA
E

2220
1  

 

 

 

θ  
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B. PARTIAL POLARIZATION AND STOKES VECTOR 
So far, we have considered only monochromatic waves that are 

completely polarized and in which the other wave attributes (amplitude and 

phase) are time invariant. A discussion of partial polarization is included here for 

completeness and to illustrate the usefulness of Stokes vectors representations. 

By partial polarization, we mean a quasi-monochromatic wave with time-

dependent amplitude and phase. The wave polarization traces an ellipse with 

time-varying tilt and amplitude.  As further illustration, Mott [11] characterized a 

quasi-monochromatic wave to be a sum of a completely polarized and a 

completely unpolarized wave from which the degree of polarization can be 

defined.  

 

1. Coherency Matrix  
Using this decomposition concept, and because of the time-variant or 

stochastic nature of partially polarized waves, a coherency matrix containing the 

correlations between polarized and unpolarized  components of the electric field 

is used. The derivation of the coherency matrix (as detailed in [2] and [11]) can 

be visualized through geometric optics because, optically, coherency is the ability 

to form interference fringes [2]. Recalling the definition of the E-field from (2.12), 

]Re[ )(
0

kztjeEE −= ω  and propagating this E-field through a bire-fringent phase plate 

that introduces a phase difference δ  between the x and y components, we may 

re-write the field as one propagating along the z-axis and making an angle θ  to 

the x-axis, so that: 

θθθ δ sincos),(0
j

yx eEEtE +=     (3.10) 
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Figure III-1 Illustration of Wave Propagating in z-direction 

The time-averaged intensity is then: 

θθθθ δδ sincos)(sincos|| 222
0

j
yx

j
xyyyxx eJeJJJE +++>=< −  (3.11) 

where [J] is the coherency matrix and the elements are averaged over a number 

of oscillations or cycles as denoted by the angular brackets:   

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

)()()()(
)()()()(

][ **

**

tEtEtEtE
tEtEtEtE

JJ
JJ

J
yyyx

yxxx

yyyx

xyxx   (3.12) 

Unpolarized waves have time averages that are independent of the angle 

the wave makes to the x-y axis as it propagates along the z-direction; i.e., over 

time, the amplitude of the power or time-averaged intensity does not depend on 

the polarization of the E-field since the E-field has no constant polarization state. 

This requires that: 

yyxx JJ =      (3.13) 

yxxy JJ == 0      (3.14) 

The coherency matrix is important in partial polarization: its trace, 

determinant and eigenvalues all have a direct mathematical relationship to the 

θ
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degree of polarization, P. The coherency matrix can also be subjected to unitary 

transform so that it can be decomposed into its unpolarized and polarized 

components. However, the coherency matrix is difficult to visualize and, 

alternatively, Stokes vectors can be used to characterize the amplitude and 

polarization of partially polarized waves. 

 

2. Stokes Vector 
For completely polarized or monochromatic waves, the Stokes vectors are 

introduced simply as [11]: 

22
0 |||| yx EES +=      (3.15) 

22
1 |||| yx EES −=      (3.16) 

δcos||||22 yx EES =     (3.17) 

δsin||||23 yx EES =     (3.18) 

where E  and δ  are as previously defined. It can be seen that from the Stokes 

vectors, all information about the amplitude and polarization can be defined. In 

particular, note also that: 

2
3

2
2

2
1

2 SSSSo ++=      (3.19) 

The Stokes vector is often expressed in matrix form as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

S
S
S
S

S      (3.20) 

We can also relate the Stokes vectors to the polarization ellipse parameters: 

1

2
22 cos
||||

||2
2tan

S
S

EE
E

yx

x =
−

= δϕ     (3.21) 
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3
22

0

2
sin 2 sinx y

x y

E E S
SE E

τ δ= =
+

    (3.22) 

In the partially polarized case, we separate the Stokes vectors into the 

polarized and unpolarized components as before, 

unpolpol
S
S
S
S

S
S
S
S

S

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎣

⎡
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⎥
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⎥
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⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

3

2

1

0

    (3.23) 

With some manipulation we establish the relationship between the coherency 

matrix and the Stokes vector. 

yyxx JJS +=0      (3.24) 

yyxx JJS −=1      (3.25) 

yxxy JJS +=2      (3.26) 

)(3 yxxy JJjS −=     (3.27) 

Then for the completely unpolarized case, from (3.13) and (3.14), we have 

0321 === SSS     (3.28) 

and, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0

)1( 0

3

2

1

0 SR

S
S
S

RS

S     (3.29) 

where R is the degree of polarization and can be defined as: 

2
0

2
3

2
2

2
1

0

0

)(
]}det{[41

yyxx

pol

JJ
J

S
SSS

S
S

R
+

−=
++

==   (3.30) 
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Note that for the completely polarized case, R=1 and the equation reduces 

back to (3.20). 

 

3. Poincarē Sphere 
The Poincarē sphere is a geometrical visualization of the Stokes vectors. 

Re-expressing the Stokes vectors in terms of 0S , ϕ  and τ (from the polarization 

ellipse), we obtain [11]:  

ϕτ 2cos2cos01 SS =       (3.31) 

ϕτ 2sin2cos02 SS =      (3.32) 

τ2sin03 SS =       (3.33) 

It is then apparent that 1S , 2S  and 3S  are the Cartesian coordinates of a point on a 

sphere with radius 0S . ϕ2  and τ2  are the azimuthal and elevation angles 

respectively. It is also popular to express the Stokes vectors in terms of the 

Deschamps parameters that are mathematically defined as [8]: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

εγ
εγ

γ

2sin2sin
2cos2sin

2cos

0

3

2

1

S
S
S
S

    (3.34) 

Hence, any polarization state can be described by a point on the sphere and vice 

versa. 
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Figure III-2 Poincarē sphere[11] 
In addition to the Stoke’s vectors, the Poincarē sphere also carries 

information about the p, q and P (the various polarization ratios defined in 

Chapter II) that can be visualized on the sphere itself. This is done by mapping 

the Poincarē sphere onto the complex plane. Before doing so, we summarize the 

parameters for some cases of polarizations. 

Table III-2 Polarization Parameters for Some Polarization States [11] 

Polarization p P q 1S 2S 3S  

Right Circular 1 -j 0 0 0 - 0S  

Left Circular -1 j ∞ 0 0 0S  

Linear Vertical j∞  ∞ -1 0S 0 0 

Linear Horizontal 0 0 1 1 0S 0 

Figure III-3 shows the way to map a point on the Poincarē sphere onto the 

p, P complex planes to obtain their values. The north-pole (z-axis) of the sphere 

is aligned with the real axis of the p plane and the equator of the sphere is 

aligned with the imaginary axis.  The mapping is done by drawing a line that 

intersects (i) the furthest point on the sphere from the plane (specifically the 

1S
2S

3S

ϕ2

τ2
2γ

2ε
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highest point along the x-axis in this illustration), (ii) the point of interest in the 

sphere and (iii) the projection point on the p complex plane.  

In Figure III-3, point A, which is also the north pole of the sphere, 

describes p=-1 and P= j, which is a projection from the point (0, 0, )0S  of the 

sphere (with Cartesian coordinates ( 1S , 2S , )3S ). Point B describes p=j and P=1, 

which is projected from the point (0, 0S , 0) from the sphere. This construction 

agrees with Table III-2. Any other point on the sphere referring to any polarization 

states can be mapped in a similar manner. 

 

Figure III-3 Mapping of Poincarē sphere onto p and P Complex Plane [11] 
 
 

C. SCATTERING/ SINCLAIR MATRIX 
When an EM wave is incident on a target, the polarization of the back-

scattered wave is generally different from the incident wave and the geometry of 

the target will determine the extent of depolarization. Sinclair proved that the 

Re(p) 

Im(p) 
Re (P) 

Im(P) 

y, 2S  

z, 3S   

x, 1S  

A 

B 
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target acts as a polarization transformer and defined this change by a 2 x 2 

scattering matrix [8].  

⎥
⎦

⎤
⎢
⎣

⎡
=

yyyx

xyxx

AA
AA

A][     (3.35) 

The important concept of the scattering matrix is that it links the two 

orthogonal components of the incident Jones vector to the back-scattered 

components. 
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rE
E
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1    (3.36) 

The distance term 
rπ4

1  is often omitted from literature since only the 

polarization is of interest most of the time. For a mono-static system (where the 

radar transmitter and receiver are co-located), the reciprocity theorem1 states 

that the cross polarization terms are equal [9]. 

yxxy AA =      (3.37) 

 

1. Examples of Scattering Matrices of Canonical Targets  
The scattering matrices are dependent on the geometry of the targets. 

Once the scattering matrix is specified, the back scattered wave can be 

computed for any incident wave polarization state. The scattering matrices of a 

number of canonical targets have been well established in literature and are 

tabulated here. 

 

 

                                            
1 Reciprocity Theorem - If a voltage source E acting in one branch of a network 
causes a current I to flow in another branch of the network, then the same 
voltage source E acting in the second branch would cause an identical current I 
to flow in the first branch. 
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Table III-3 Scattering Matrices of some Canonical Targets [8],[2] 

Rectangular Flat 

Plat or Sphere ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

plateA  

 

Dihedral 
⎥
⎦

⎤
⎢
⎣

⎡
−

=
ββ
ββ
2cos2sin

2sin2cos
dihedralA  

 

Metallic Helix 
⎥
⎦

⎤
⎢
⎣

⎡
−−
−

=
1

1
2
1

j
j

Ahelix  
 

 

2. Determination and Measurement of the Scattering Matrix 
The scattering matrix contains all the information about the scattering 

properties of the target. The elements of the scattering matrix are generally 

complex quantities that may be expressed as [14] 

[ ]
xyxx

yx yy

ii
xx xy

i i
yx yy

A e A e
A

A e A e

φφ

φ φ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

    (3.38) 

The components of the matrix are related to the scattering cross section 

by 

222 2

2 22 2

4 , 4

4 , 4

xx xx xy xy

yx yx yy yy

r A r A

r A r A

σ π σ π

σ π σ π

= =

= =
  (3.39) 

where r is the range of the target. Hence the specification of the scattering matrix 

is dependent on the measurement of the scattering cross section of the target. In 

the mono-static case xy yxA A= , and this leaves three amplitudes and three 

phases to evaluate. The absolute phase depends on the distance of the target to 

the  radar  and  the  target  orientation.  It  is  almost  impossible  to  measure the  

β 
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absolute phase accurately and a relative phase measurement is used instead. In 

this case, one of the phase terms, e.g., xxφ , is factored out and the scattering 

matrix becomes 

[ ]
( )

( ) ( )

1
4

xy xx

xx

yx xx yy xx

i
xx xyi

i i
yx yy

e
S e

re e

φ φ

φ
φ φ φ φ

σ σ

πσ σ

−

− −

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

  (3.40) 

Then, five quantities are left to be measured for the monostatic case: three 

amplitudes and two relative phases. Relative phases are easier to measure than 

the absolute phase since they are not dependent on the target distance. Also, 

absolute phase is not necessary for most cases to determine the polarization 

states. Ruck et. al. [14] provides the elements to be measured in a laboratory 

transmit and receive scenario for both absolute and relative phase method. 

 

3. Optimal Polarizations 
We can make use of the scattering matrices and the polarization match 

factor or polarization ratios introduced in Chapter II to determine the polarization 

whereby the received power is a maximum or a minimum. 

The scattering matrix in one polarization basis may be transformed to 

another polarization basis in a different orientation, e.g., in a bi-static scenario 

whereby the transmitting and the receiving antenna may not have the same 

polarization states. This is done using a unitary transformation matrix [4],[8]: 

[ ]Txyab UAUA ]][[][ =     (3.41) 

where , 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

−
=

− αα
αα

δ

δ

cossin
sincos

j

j

e
e

U     (3.42) 

and α  describes the change in orientation angle between the two polarization 

bases. We have previously defined the polarization ratio in (II-21) as δϕ jeP tan=   
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relating the orthogonal components of an EM wave. It can be redefined 

analogously as a polarization ratio that describes the change in polarization basis 

as: 

δα jeP tan=      (3.43) 

In this case, the unitary transformation matrix can then be written simply as: 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−+

=
1

1

1
1

** P
P

PP
U      (3.44) 

Now the elements of the [ ]abA  matrix can be written as: 

)]([)1(

)][)1(

)][)1(

)]([)1(

*2*1*

**1*

**1*

21*

yxxyyyxxbb

xyyxyyxxba

yxxyyyxxab

yxxyyyxxaa

AAPAAPPPA

APPAPAAPPPA

APPAPAAPPPA

AAPAPAPPA

+−+−+=

−++−+=

−++−+=

++++=

−

−

−

−

   (3.45) 

In the optimization problem, we can visualize the two scattering matrices 

as the transformation in polarization state when the EM wave is depolarized by a 

target. The power of the scattered wave is distributed into two channels of 

reception, the co-polarized channel (identical to the polarization state of the 

transmitting antenna) and the cross-polarized channel (orthogonal to the 

polarization state of the receiving antenna).  

 

 

 

Figure III-4 Polarization States of Transmitted and Backscattered Waves 

It was first shown by Kennaugh that there exist two pairs of optimal 

polarizations states [1]. The co-polarization null pair (CO-POL) for minimal co-

polarization (and maximum cross-polarization) is obtained by setting aaA  and bbA  

to zero so that [2]: 

Target 
Transmitting 
Antenna (xy 

polarization state) 

Receiving 
Antenna (ab 

polarization state)
[A]xy [A]ab 
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( )2

1,2

( ) 4

2
xy yx xy yx xx yyco

yy

A A A A A A
P

A

− + ± + −
=    (3.46) 

The cross polarization null pair (X-POL) for maximal polarization is obtained by 

setting abA  and baA  to zero so that [2]: 

2
1 1 2 3

1,2
2

2 2 * *
1

* *
2

* *
3

4
2

(| | | | )

( )

( )

x

yy xx xy yx yx xy

yy yx yx xx

xx xy xy yy

R R R R
P

R

R A A A A A A

R A A A A

R A A A A

− ± +
=

= − − +

= +

= +

  (3.47) 

The CO-POL and the X-POL pairs are often plotted onto the Poincarē sphere 

forming what is known as the Polarization fork, originally conceived by Huynen. 

Many optimization techniques have been developed and a good summary 

is found in [1]. Such techniques may involve matrix manipulation of a target 

scattering matrix to derive its eigenvalues, deriving the polarization ratios from 

the Poincare sphere or using the Stokes vector and Muller matrix. Optimization of 

polarization states will be further discussed in Chapter IV through its 

implementation in Matlab. 

 
 

D. MUELLER (POWER) MATRIX 
For the partially polarized case, it is necessary to relate the incident and 

scattered Stokes vector. Just as the incident and scattered Jones vector is 

related by the scattering matrix, the incident and scattered Stokes vector is 

related by the Mueller matrix [8]: 

[ ]scattered incidentS M S=      (3.48) 

We express the Stokes vector in the energy form to give [9]: 
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2

2

*

*

| |1 1 0 0
| |1 1 0 0

0 0 1 1
0 0

x

y

x y

y x

E
E

S
E E
E Ej j

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − ⎢ ⎥⎣ ⎦ ⎣ ⎦

    (3.49) 

Then relation between the incident and scattered energy is given by the relation 
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⎥
⎥
⎥
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⎢
⎢
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⎣

⎡
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x

s
x
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y
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x
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y

s
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EE
EE

E
E

AA

EE
EE

E
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    (3.50) 

so that [14],

 

1* * * *

* * * *

* * * *

* * * *

11

1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 0 0

s

xx xx xy yx xx xy xy xx

yx yx yy yy yx yy yy yx i

xx yx xy yy xx yy xy yx

yx xx yy xy yx xy yy xx

S

A A A A A A A A
A A A A A A A A

S
A A A A A A A A
A A A A A A A Aj j j j

M M

−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

=

12

21 22

33 34

43 44

0 0
0 0

0 0
0 0

iM M
S

M M
M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(3.51) 
Generally, the scattering matrix contains complex elements of a voltage and is 

used for coherent systems while the Mueller matrix contains power elements and 

is used for incoherent systems[14]. 

 

 
E. TARGET DECOMPOSITION THEOREMS 

Cloude [5] defines the main idea behind Target Decomposition (TD) 

theorems as “expressing the average scattering matrix for a random media 

problem as a sum of independent elements and to associate a physical 

mechanism with each component.”  
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The scattering matrix is a measured quantity, often stochastic rather than 

deterministic in nature. The use of TD theorems to evaluate the average 

scattering matrix allows the various scattering mechanisms and target physical 

properties to be identified. In addition, it is possible to generate a dominant 

scattering mechanism for better physical interpretation. This is the main 

advantage of TD theorems. 

The method described here is based on developments by Cloude and 

involves the use of Pauli matrices to vectorize the scattering matrix. The 

scattering vector can then be related to the physical attributes of the scattering 

target using the Scattering Vector Reduction Theorem. Finally, these physical 

attributes can be used to identify the target against a cluttered background that 

has different scattering mechanisms.   

 

1. Pauli Spin Matrices 
The Pauli spin matrices (commonly used in quantum mechanics) can be 

used to decompose the scattering matrices. In quantum mechanics, Pauli 

matrices are a basis set that described microscopic particles of spin ½. Spin is a 

quantity similar to angular momentum in classical mechanics but is distinguished 

by its quantized and discrete nature [19].  The Pauli spin matrices are  [9]: 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=Ψ

0
0

2,
01
10

2,
10

01
2,

10
01

2
j

j
P   (3.52) 

The interpretation of the Pauli matrices is as tabulated: 
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2

1 0
0 1

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦1

1 0
0 1

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

Table III-4: Pauli Matrices and their Interpretation [9] 

Pauli matrix Scattering Type Interpretation 

⎥
⎦

⎤
⎢
⎣

⎡
10
01

 
Odd- bounce Surface, sphere, corner reflectors 

⎥
⎦

⎤
⎢
⎣

⎡
−10
01

 
Even-bounce Dihedral 

⎥
⎦

⎤
⎢
⎣

⎡
01
10

 
Even-bounce π/4 tilted π/4 tilted dihedral, volume scattering

⎥
⎦

⎤
⎢
⎣

⎡ −
0

0
j

j
 

Cross-polariser Non-existent for backscattering 

The advantage of using a Pauli matrix basis is that the elements that 

result are closely related to the physics of wave scattering [4]. The scattering 

types that result after decomposition are orthogonal so that their separation is 

straightforward. As an example, recall the concept presented in Table Table III-3 

that the polarization states of backscattering from targets are determined from 

their scattering matrices. We illustrate this again in the following Figure III-5 

(notice that the two scattering matrices form two of the Pauli matrices defined 

above). 

 

 

 

 

 

Figure III-5 Relating Scattering Matrices to Pauli Matrices 
Based on this idea, the Pauli decomposition can be used to process a full 

polarimetric data set and separate them into their orthogonal sets. Figure III-6 of 
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the Great Aletsch glacier, Switzerland gives a vivid illustration of this property of 

the Pauli matrices [18]. Using Pauli decomposition, a three color picture of a fully 

polarimetric data set is constructed.  Areas with even-bounce characteristics 

represent buildings in urban areas and are coded in red. Areas with odd-bounce 

characteristics representing flat surface and corner reflectors are coded in blue. 

Lastly areas with scattering mechanism of the third Pauli matrix that represents 

volume scattering are coded in green. 

 

Figure III-6 Pauli Decomposition of a Full Polarimetric Data Set [9] 
 

2. Vectorization of Scattering Matrices 
The extraction of physical information about a target involves the 

vectorization of its scattering matrix. The vectorization process makes use of the 

Pauli matrices as basis elements to separate the scattering matrix into its 
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physical scattering mechanism. The representation of the scattering matrix in the 

Pauli basis matrix results in a vector k̂  through the following operation [5],[7]: 

T
VHHVVHHVHHVVVVHH

VH

HV

VH

HV

VV

HH

VV

HH

P

AAjAAAAAA

jA
jA

A
A

A
A

A
A

Trace

ATracek

)](,,,[
2

1

0
0

,
0

0
,

0
0

,
0

0
2

1

)]([
2
1ˆ

−+−+=

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

Ψ=

 

(3.53) 

In the case of backscattering, the reciprocity theorem, as mentioned in 

equation(3.37), results in VHHV AA = , thereby eliminating the fourth term in the 

scattering vector, reducing it to: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
+

=

HV

HHVV

VVHH

A
AA
AA

k
22

1ˆ      (3.54) 

Specifically, the elements of this scattering vector are derived from a 

scattering matrix decomposed by a Pauli basis set. The first element HH VVA A+  is 

from the first Pauli matrix and hence represent an odd-bounce scattering type. 

The second element VV HHA A−  corresponds to an even bounce scattering type 

and the third element 2 HVA  corresponds to the third Pauli matrix. This then 

illustrates how the Pauli decomposition of a full polarimetric data set is 

accomplished. Referring back to Figure III-6, areas coded blue are the first 

elements of the scattering vector, areas coded red are the second elements and 

areas coded green are the third elements. 

In order to correlate the target scattering vector to the actual physical 

attribute and scattering mechanism, we need to equate the scattering vector to a 

general unitary complex vector [7] whose parameters are linked to physical 

space, so that now, 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
+

=
βα
βα

α

sinsin
cossin

cos
ˆ

22
1ˆ kwk

A
AA
AA

k

HV

HHVV

VVHH

  (3.55) 

Equation (3.55) may be visualized as a unitary transformation of the matrix 

to a different axes set (e.g. in the case of (3.36)). One way to do this is to utilize 

the Poincaré sphere. Hence the expression of the k̂  vector as a unitary complex 

vector is analogously equivalent to rotation of the Poincaré sphere where α  and 

β  are the Deschamps parameters, previously described in (3.34) and repeated 

here [7]: 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

εγ
εγ

γ

2sin2sin
2cos2sin

2cos

0

3

2

1

S
S
S
S

    (3.56) 

To change the scattering vector k̂  into ˆ 'k  with a differential change in 

scattering mechanism, we can introduce changes ∆α and ∆β in the angles α and 

β respectively [9]. Mathematically this is done by using vector rotation algebra: 

1 0 0
ˆ ˆ' 0 cos sin

0 sin cos
k kβ β

β β

⎡ ⎤
⎢ ⎥= ∆ − ∆⎢ ⎥
⎢ ⎥∆ ∆⎣ ⎦

   (3.57) 

cos sin 0
ˆ ˆ' sin cos 0

0 0 1
k k

α α
α α
∆ − ∆⎡ ⎤

⎢ ⎥= ∆ ∆⎢ ⎥
⎢ ⎥⎣ ⎦

   (3.58) 

This observation leads to the important concept of the Scattering Vector 

Reduction Theorem [4] that states that “it is always possible to reduce an 

arbitrary scattering mechanism represented by a complex unitary vector, k̂ to the 

identity [ ]T0,0,1  by the following set of ordered matrix transformations”: 

1 cos sin 0 1 0 0
ˆ0 sin cos 0 0 cos sin

0 0 0 1 0 sin cos
k

α α
α α β β

β β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (3.59) 
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We are now finally ready to interpret the above in terms of both the 

physical attributes of the target as well as its scattering mechanism. The two 

matrices above resemble the matrices for plane rotations. Physically, β 

corresponds to the rotation of the sensor coordinates [4]. Conversely, this angle 

also refers to the orientation of the target and takes on a value of -1800 to 1800. 

The first matrix containing the angle α, though, also resembles a plane 

rotation and is not related to target orientation. This matrix corresponds to an 

internal degree of freedom of the target and hence is directly related to the type 

of scattering mechanism of the target [4].  The angle α is continuous within a 

range of 00 to 900 and can be used to represent a variety of different scatterers.  

 

 

 

 

 

 

 

Figure III-7 Interpretation of the α angle [9] 
 

The interpretation of the α angle is proposed and developed by Cloude [6]. 

He suggests that the scattering by a media can be modeled by a single dominant 

matrix, the coherency matrix, defined as 

[ ] *ˆ ˆ TT k k= ⋅      (3.60) 

The coherency matrix [ ]T  has three eigenvalues, 1λ , 2λ  and 3λ , and the 

entropy, H, of these eigenvalues is a measure for the randomness of the 

averaged polarimetry scattering with H = 0 indicating a single scattering 

mechanism and H = 1 representing a random mixture of scattering mechanisms, 
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i.e. a depolarizing target. Values between 0 and 1 indicate the degree of 

dominance of one particular scatterer: 

3

1
logi n i

i
H P P

=

= −∑     (3.61) 

1

i
i n

j
j

P λ

λ
=

=

∑
     (3.62) 

The angle α  can be determined by the parameterization of [ ]T   

[ ] [ ] [ ]
1

*
3 2 3

3

0 0
0 0
0 0

TT U U
λ

λ
λ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   (3.63) 

where 

[ ] 31 2

31 2

1 2 3

3 1 1 2 2 3 3

1 1 2 2 3 3

cos cos cos
sin cos sin cos sin cos
sin sin sin cos sin cos

jj j

jj j

U e e e
e e e

δδ δ

γγ γ

α α α
α β α β α β
α β α β α β

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.64) 

and  

1 1 2 2 3 3P P Pα α α α= + +     (3.65) 

An Hα − plot can be constructed that defines 9 regions for different scattering 

zones at different entropies (ranging from Low Entropy Surface Scattering to 

High Entropy Multiple Scattering). 
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Figure III-8 Zones in α-H plane for Random Media Scattering Problems [6] 
 

At α= 00, we have an isotropic surface represented by the first Pauli 

matrix. As α increases, the surface becomes increasingly anisotropic. At α=900, 

we obtain the second Pauli matrix. This point can also be used to represent 

targets that cause a phase shift of 2π between the H and V components of the 

electric field. For intermediate values of α , the scattering mechanism becomes 

anisotropic and HHA  and 
VV

A  are no longer equal. The anisotropic behaviour and 

consequently the increasingly different co-polar scattering coefficients means a 

preferential scattering in a particular direction. At the limit of α=450, this leads to a 

dipole scatterer whose orientation is determined by the angle β and one of the 

copolarized coefficient goes to zero.  

The α angle is decoupled from the β angle so that scattering mechanism 

can be identified independently of the target’s physical orientation. A list of the 

possible α and β angles are tabulated and mathematical examples of their 

derivation are given in Chapter IV. 
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Table III-5 Examples of α and β angles for Canonical Targets [9] 

Canonical Scatterer α β 

Sphere 00 -1800 to1800 

Dihedral at θ 900 2θ 

Dipole at θ 450 2θ 

Helix 900 ±450 

Surface at θ 00 2θ 

Many other TD theorems exist and different approaches seek to extract 

different information. The TD theorems may also be applied to the various 

polarization matrices besides the scattering matrix such as the coherence and 

the Mueller matrices. A good review of the various approaches is available in [5] 

and [9], pg 43-58. 
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IV. POLARIMETRY THEORETICAL ANALYSIS 

The approach of this analysis is to use numerical examples to verify the 

TD theorems put forth by current researchers. The objective is to illustrate that 

full polarimetric data set does enhance target detection, simply by the fact that 

target information is lost in the target returns through the cross-pol channels that 

are not collected. Depending on the target geometry and orientation, the 

recovery of such information may be pivotal to the detection of the target. 

The second aspect of the analysis is to create a Matlab model that can 

derive the optimal polarization states of the incident electric field for any target 

scattering matrix. There currently exist many analytical techniques to obtain the 

optimal polarization states and our implementation in Matlab provides a fast and 

easy numerical instantiation of the derived solutions. 

The source codes for the two models are included in the appendices. 

 

A.  USING TD THEOREMS FOR TARGET DETECTION 
 

1. Scattering Matrices and Vectors 
Before we use the TD theorems in Chapter III, some verification was 

conducted to ensure commutability between the scattering matrix and scattering 

vector through known matrices of canonical targets, also introduced in Chapter 3. 

Expressing equation (3.52) in terms of the elements of the scattering 

matrix yields 

cos sin cos
1 cos sin cos
2

sin sin

HH

VV

HV

A
A
A

α α β
α α β

α β

+⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (4.1) 

 Starting with the sphere or the flat plate, the angle α  is selected as 00 for 

an isotropic odd bounce surface while β  can adopt any angle due to the 

symmetry of the sphere. Substituting this into the equation (4.1) we obtain 
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cos 0 sin 0cos 1
1 1cos 0 sin 0cos 1
2 2

sin 0sin 0

HH

VV

HV

A
A
A

θ
θ

θ

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (4.2) 

or, in the more common scattering (normalized) form, 

1 0
0 1sphereA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    (4.3) 

This is in agreement with Table III-3 of scattering matrices of canonical targets. 

Similarly for a dihedral orientated at an angle θ , the α  angle is selected 

as a 900 for an isotropic even bounce surface, the scattering matrix elements are, 

cos90 sin 90cos 2 cos 2
1 1cos90 sin 90cos 2 cos 2
2 2

sin 90sin 2 sin 2

HH

VV

HV

A
A
A

θ θ
θ θ

θ θ

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (4.4) 

cos 2 sin 2
sin 2 cos 2dihedralA

θ θ
θ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

    (4.5) 

 The above examples illustrates that the target scattering vector does 

connect the scattering matrix to the target geometry and scattering mechanism 

by appropriate selection of the α and β angles. 

 

2. Construction of Foliage 
Foliage commonly constitutes radar volume clutter and hides legitimate 

targets. It is an important aspect of radar detection to study and model this 

target/clutter interaction. The foliage is expected to bring about some degree of 

depolarization of the electric waves but this effect is not significant in any one 

single direction due to the random distribution and orientation of the leaves. 

We use the same basic equation derived from TD analysis and, as before, 

model the foliage as a two-dimensional layer of leaves. The model is 

implemented in MatLab. Each leaf resides in a single cell in a grid of user-defined 
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dimensions (We use a 50 by 50 grid in this simulation).  Each cell is then 

represented by a scattering vector or matrix. This concept is shown in Figure IV-1 

 

 

 

 

 

 

 

Figure IV-1 Foliage Modeling 
The angle α  is selected as 450 to simulate the leaves as a cloud of small 

anisotropic dielectric dipoles. The β angle is taken to be uniformly distributed 

from 0 to π to simulate the random orientation of the leaves. From the scattering 

vectors, we derive the scattering behavior and populate each cell with an 

appropriate scattering matrix.  

Now, we introduce a propagating electric-field to interact with the foliage 

and then study the backscattered polarization states. Jones vectors are used to 

represent horizontally, vertically and circularly polarized E-fields.  

Table IV-1 Jones Vectors of Incident E-fields 
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The Jones vector will interact with each of the cells according to the 

following equation: 

r i
xx xyx x

r i
xy yyy y

A AE E
A AE E

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦     
(4.6) 

The output of our model is a graphical display of the horizontal and the 

vertical components of the backscattered E-field.  

a) Horizontal Incident E-Field 
The plot shown below is the backscattered E-field due to a 

horizontally polarized incident E-field, [ ]1 0 TiE = . 

Figure IV-2 Backscattered E-field due to a Horizontally Polarized Incident E-field 
The mean scattering matrix of the foliage from this simulation run 

is: 

0.3514 0.2274
0.2274 0.3558foliageA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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and the mean return of the electric-field is 

0.3514
0.2274

rE
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

These results show that some degree of depolarization has occurred as the 

completely horizontally polarized incident e-field is now depolarized by the foliage 

with backscattered E-field components in both vertical and horizontal polarized 

states.  

b) Linearly Polarized at 450 Incident E-field 
The simulation run was repeated with linearly polarized at 450 E-

field with components of equal magnitude in both horizontal and vertical 

polarization state. 

Figure IV-3 The Backscattered E-field from a Linearly Polarized at 450 E-field  
The mean scattering matrix is identical to the last simulation and 

the mean backscattered E-field is now: 



52 

0.41
0.40

rE
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

This result is to be expected since the incident E-field is equally polarized in the 

vertical and horizontal directions – the foliage being a random depolarizer, it 

should not have significant effect on the E-field polarization over sufficiently large 

sample. 

c) Circularly-Polarized Incident E-field 
Another interesting scenario that was examined used a circularly 

polarized incident electric field with the Jones vector, 1 1,
2 2

T
iE j⎡ ⎤= ⎢ ⎥⎣ ⎦

 for a left 

circularly polarized incident field. The results for this case are presented in Figure 

(V-4) (both the real and imaginary parts of the echo field). 

Figure IV-4 Backscattered E-field from a Left Circularly Polarized Incident E-field  
The mean of the backscattered E-field is then 
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0.25 0.16
0.16 0.25

r j
E

j
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
     (4.7) 

 

3. Modeling Target and Foliage 
The idea now is to locate a target within the foliage and observe the 

overall scattering behavior. A number of canonical targets may be used: e.g. flat 

plates, dihedrals oriented at different angles or metallic helixes. The scattering 

vectors of the targets are listed in Table III-3. The location of the target is 

randomized in the 50 by 50 grid so that each simulation run is associated with a 

different target location.  Figure IV-5 gives an illustration of the model. 

 

 

 

 

 

 

Figure IV-5 Modeling the Target and the Foliage Together 
The model currently holds scattering matrices of most known canonical 

targets (including linear polarization at various orientations, dihedrals at various 

orientations, flat plates/ spheres and helixes) and Jones vectors of various 

polarizations of the incident E-fields.  

The backscattered returns will now be due to both the foliage clutter and 

the target based on the following relationship 

arg
r i i

t et clutterE A E A E= +     (4.8) 

a) Horizontally Polarized Incident E-field on Flat Plate 
A relatively straight forward simulation run was conducted first 

based on the scenario of a horizontally polarized electric field impinging onto a 

flat plate target. The flat plate does not depolarized the incident electric field and 

Dihedral oriented at 
an angle located at a 
random location 
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the reflected electric-field from the target alone is therefore still expected to be 

located in the horizontal component. The result of this simulation run is given in 

Figure IV-6. 

Figure IV-6 Backscattered E-field from a Horizontally Polarized Incident E-

field reflected from a Flat Plate 

As discussed, for this case the bright target return is not 

depolarized and is located within the horizontal components of the backscattered 

E-field, which is the same polarization of the transmitting antenna that produced 

the horizontally polarized incident field. The foliage behaves by altering the 

horizontal incident E-field so that the backscattered E-field has a vertical 

component. However, this behavior would be different if a depolarizing target is 

used.  
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b) Horizontally Polarized E-field on 450 Dihedral Target 
For the next simulation run a 450 oriented dihedral, known to 

completely depolarize the incident field, is examined.  We continue to use a 

horizontally polarized incident field. The result obtained is shown in Figure IV-7  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure IV-7 Backscattered E-field from a Horizontally Polarized Incident E-field 
reflected from a 450 Oriented Dihedral 

Now the target return is completely located in the vertical 

component of the backscattered electric field. Hence without a full polarimetric 

data set, this target will not be detected despite producing such a bright (clutter-

free) return. 

c) Left-Circularly Polarized E-field on Flat Plate Target 
The effect of circularly polarized incident E-field on various targets 

was also investigated using the model. The Jones vector of the incident E-field is 

now 
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1
2
1
2

iE
j

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

     (4.9) 

and it represents a left-circularly polarized wave. The imaginary vertical 

component means that the two orthogonal components are 900 out of phase. The 

first scenario once again involves a flat plate target and the result of the 

simulation is shown in Figure IV-8 (including both the real and the imaginary 

components). The result essentially shows that the backscattered wave is not 

depolarized, and continues to be a circularly polarized wave (with real 

component in the horizontal and imaginary component in the vertical).   

 

Figure IV-8 Backscattered E-field from a Left-Circularly Polarized Incident E-field 
reflected from a Flat Plate 
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d) Left-Circularly Polarized E-field on Helix Target 
The last scenario included here is that of a circularly polarized E-

field impinging on a helical target. The helical target acts as a polarizer that 

brings about a phase difference of 900 to the vertical and horizontal components 

of the incident E-field. Because the incident E-field components are already out 

of phase by 900, the helix target actually removes the phase difference resulting 

in a linearly polarized backscattered signal. This effect is shown in Figure IV-9. 

The backscattered signal is now a horizontally polarized wave. 

 

Figure IV-9 Backscattered E-field from a Left-Circularly Polarized Incident E-field 
reflected from a Helix 

This portion of the analysis shows the possibility of using TD 

theorems to extract physical properties of targets from their scattering matrices 

and these physical attributes can be used in modeling – in this particular case, 

for simulation of foliage. The latter example of a man-made target buried in 

foliage clutter demonstrates the importance of obtaining full polarimetric data set 
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for target detection. We chose a particularly bright target and showed that, due to 

depolarization, the return signal can be completely lost. It should also be noted 

that for the dihedral, the characteristic to depolarize also depends on its 

geometry, i.e., its orientation angle of 450. 

 
B. POLARIZATION OPTIMIZATION 

The theory for optimization of polarization state is detailed in [1] and a 

number of techniques are discussed there. For simulation in Matlab, we select an 

optimization technique that uses the Stokes vectors and the Mueller (power) 

matrix. This technique has the particular advantage that the input arguments are 

in the power or intensity units, so that the output, which is also in terms of power 

units, can be directly obtained by selecting the appropriate elements of the 

Mueller matrix. Since the program will essentially vary the input parameters until 

the peak power return is obtained, the intermediate mathematical techniques 

covered in [1] can be avoided entirely. 

 

1. Modeling the Varying Incident Electric Field and Stokes 
 Vectors 
The polarization states of the incident electric field can be described 

complete by its tilt and ellipticity angles (refer to Chapter 2 Section B). Equation 

(3.6) shows the relationship as [8] 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
= −

τ
τ

ϕϕ
ϕϕδ

sin
cos

cossin
sincos

),( j
AeE j

yx    (4.10) 

Hence, any Jones vector of the electric field may be described by varying 

the tilt and the ellipticity. However, as defined by the polarization ellipse, the 

ellipticity has a range of -450 to 450 while the tile of the ellipse has a range of 00 

to 1800 – and these will be the ranges of our model parameters. 

The electric field is used to generate the Stokes vectors using the 

following equation [11] 
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    (4.11) 

where δ  is the phase difference between the x (horizontal) and y (vertical) 

components of the electric field and can be derived from the tilt and/or ellipticity 

angles [12] 

22

cos tan 2
2

x y

x

E E
E

δ ϕ
−

=     (4.12) 

 

2. Application of the Mueller (Power) Matrix  
In Chapter III we explained how the Mueller matrix transforms the incident 

Stokes vectors to the backscattered Stokes vectors, analogously to the operation 

of scattering matrix and Jones vectors. However, we need to separate the 

backscattered field into the co-polarized and the cross-polarized channels to 

explore the effects of polarization, i.e., we need to determine how much of the 

incident power is depolarized and returns in the orthogonal component (which is 

collected only a full polarimetric data set). 

 This is done by generating two Mueller matrices, one each for the co-pol 

and the cross-pol channel, in a manner based on developments by Boerner [1], 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

cM M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

    (4.13) 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

xM M

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

    (4.14) 
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Then, the co-pol and cross-pol power can be obtained from the following 

equations [1] 

[ ]Ti i
c

c

S M S
P

S

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=      (4.15) 

[ ]Ti i
x

x

S M S
P

S

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=      (4.16) 

  

3. Results and Analysis 
The model can now be used to determine the polarization state for 

maximum power return for any target scattering matrix. The choice of polarization 

state of the incident electric field ensures a maximum return in either the co-

polarized or the cross-polarized channel. In this sense, if the target 

characteristics can be determined, and a full polarimetric data set is available, 

the transmitted electric field can be selected to optimize the power return. 

The first scattering matrix used for simulation was that of a flat plate (or a 

sphere) that does not depolarize the incident wave field. The result of the 

simulation is presented in Figure IV-10. 
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Figure IV-10 Backscattered Power for a Flat Plate 

The figures in the first row show the power return in the co-polarized 

channel that has the same polarization state as the antenna transmitting and 

receiving the signal (for the mono-static case). The power is plotted as a function 

of the tilt and ellipticity angles. The figure on the left gives a three-dimensional 

presentation while the right figure gives a two-dimensional projection in which the 

gradient of the color gives the power return. The figures in the second row give 

the results for the cross-polarized channel. 

The results show that the return power depends only on the ellipticity 

angle and not the tilt angle. For a 00 ellipticity angle, the electric field is linearly 

polarized and the maxima occurs in the co-polarized channel showing maximum 

power is backscattered with the same polarization as the transmitting antenna. 

As the ellipticity increases to, say 100, the co-pol power begins to drop, similar to 
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the co-pol power of the incident E-field. When the ellipticity is increased to its 

maximum of 450, the cross-pol power attains its maximum value.  

 

Figure IV-11 Variation of Co-pol and Cross-pol Powers with Ellipticity 
This behavior shows that the target does not depolarize the incident field 

at all. This result is expected for a flat plate target and hence, the model has 

accurately simulated this behavior. 

The next scattering matrix used for simulation was that of the 450 oriented 

dihedral that completely depolarizes the incoming electric field. The appropriate 

scattering matrix is 

045

0 1
1 0dihedral

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    (4.17) 
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The results of the simulation is presented in Figure IV-12 below. 

Figure IV-12 Backscattered Power for Dihedral Oriented at 450 

The results given in Figure IV-12 show that the co-pol nulls are the cross-

pol peaks. We identify the tilts and ellipticity whereby the cross pol peaks occur. 

Table IV-2 Incident Electric Fields for Cross-Pol  Peaks 

Tilt, ϕ  Ellipticity, τ Equivalent Jones

00 00 0
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

900 00 1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

We can conclude from the simulation results that horizontally and 

vertically polarized electric fields are completely depolarized by a 450 oriented 

dihedral.  
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The last scattering matrix that we present here is  

2 0.5
0.5

j
A

j
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
    (4.18) 

This is an arbitrary target obtained from [1] that is used to ensure the model is 

accurate and the results are in agreement with the reference. This case is 

included here because it represents a complex target and gives rise to a more 

complicated returned power signal, illustrated in the figure below.  

Figure IV-13 Backscattered Power for an Arbitrary Target 
 

C. FURTHER WORK 
Even though most existing tactical radar systems are not polarimetric, 

future tactical radars are expected to exploit polarization information. The current 

thesis serves as a review of polarimetric investigations as it provides a 

comprehensive summary of the current efforts and development in polarimetry 
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theories. In particular, two of the more useful and interesting theories on TD 

theorems and optimization have been examined at a level sufficient to verify 

them. Given the fact that most of these polarimetry theories are recent 

developments (dating back, in some cases, to research programs begun in the 

late 70s), many aspects of the proposed theories can be further investigated, 

developed or verified. 

For the current investigation, a more complex foliage clutter model can be 

introduced. For cultured vegetation, there exists some degree of correlation such 

that the scattering mechanism and the orientation of the leaves may not be 

completely random. The correlation may be introduced in the α  angle of the TD 

theorems from the ‘ P ’ intensities in the entropy. A more realistic model can also 

be achieved if it is extended to the third dimension by introducing tree trunks 

beneath the foliage. The trunks are expected to have a single or a slightly varying 

orientation. Finally, since the current model is based on theoretical analysis, 

some realism can be injected if it can be compared to real or existing data. 

If existing full polarimetric data sets can be obtained, an interesting 

problem would be to analyze the returns, decompose the scattering mechanisms 

and create a color plot based on different scattering mechanisms. An example 

would be the Pauli decomposition plot given in Figure III-6. 

Another particularly useful implementation of radar polarimetry is in the 

interferometry of Synthetic Aperture Radar (POLINSAR). This is an ongoing 

research topic by current researchers such as Cloude and Boerner. The idea is 

that the coherency of interferometry data sets from multipass SAR (both temporal 

and spatial decorrelation) depends strongly on the polarization states. Cloude 

developed a methodology whereby polarimetric transformation bases can be 

used to analyze SAR interferograms so that the coherency can be optimized. 
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APPENDIX  MATLAB SOURCE CODES 

A. SOURCE CODE FOR TD THEOREMS 
clear all 
%Suite of EM-waves (From Ref [12]) 
%E=[1/sqrt(2);1/sqrt(2)];                 %linearly polarized at 45degree 
E=[1;0];                                 %horizontally polarized 
%E=[0;1];                                %verticallly polarized 
%E=[1/sqrt(2);(1/sqrt(2))*j]             %Left circular polarized 
%E=[1/sqrt(2);-(j*1/sqrt(2))]            %Right circular polarized 
 
% Defined alpha angle: scattering mechanism  
alpha_l = 45;                             %45 degrees for dipole 
alpha_l_rad = alpha_l/180*pi;            %convert to radians 
 
%Assign random target location 
target_x =round(rand*50);                
target_y =round(rand*50); 
 
%Create scene 
for x_space=1:50; 
for y_space=1:50; 
 
%Create clutter model for each locations 
beta_l_rad = rand*pi;                      
%Assign leaves orientation (From Ref [4])  
k_l=[cos(alpha_l_rad);sin(alpha_l_rad)*cos(beta_l_rad);sin(alpha_l_rad)*sin(beta
_l_rad)]; % leaves model 
s_hh=(k_l(1,1)+ k_l(2,1))/2;             %clutter scattering matrix  
s_vv=(k_l(1,1)- k_l(2,1))/2;             %clutter scattering matrix 
s_x=k_l(3,1)/2;                           %clutter scattering matrix 
S(x_space,y_space,1)=[s_hh];             %clutter scattering matrix  
S(x_space,y_space,2)=[s_x];              %clutter scattering matrix  
S(x_space,y_space,3)=[s_x];              %clutter scattering matrix  
S(x_space,y_space,4)=[s_vv];             %clutter scattering matrix  
 
%EM wave depolarized by Clutter 
s_c =[s_hh,s_x;s_x,s_vv]; 
e_clutter = s_c*E; 
 
%Add effect of dihedral/helix/flat plate at predetermined location 
if (x_space==target_x) & (y_space==target_y) 
    %s_t =[sqrt(2)/2,sqrt(2)/2;sqrt(2)/2,-sqrt(2)/2];      %dihedral at 22.5 deg  
    s_t = [0,1;1,0];                                        %dihedral at 45 deg  
    %s_t = [0.5,-j*0.5;-0.5,-j*0.5];                         %metallic helix    
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    %s_t= [1,0;0,1];                                        %flat plate   
    %s_t= [1,0;0,-1];                                        %dihedral at 0 degree   
  E_t =s_t*E; 
 
%Sum clutter and dihedral at where the target is located 
   E_clutter(x_space,y_space,1)= E_t(1,1); %+ e_clutter(1,1); 
   E_clutter(x_space,y_space,2)= E_t(2,1); %+ e_clutter(2,1); 
 
else 
    E_clutter(x_space,y_space,1)=e_clutter(1,1); 
    E_clutter(x_space,y_space,2)=e_clutter(2,1); 
end 
 
end 
end 
 
%Read out of results 
mean(mean(S(:,:,1)))            %scattering matrix 
mean(mean(S(:,:,2)))            %scattering matrix 
mean(mean(S(:,:,3)))            %scattering matrix 
mean(mean(S(:,:,4)))            %scattering matrix 
mean(mean(E_clutter(:,:,1)))    %Back scattered E-field  
mean(mean(E_clutter(:,:,2)))    %Back scattered E-field 
 
%plots for real values 
[x,y] = meshgrid([1:50]); 
Z_h = E_clutter(:,:,1); 
subplot(2,2,1), surf(x,y,real(Z_h)), title('Horizontal Scattered E-field') 
colorbar 
 
Z_v = E_clutter(:,:,2); 
subplot(2,2,2), surf(x,y,real(Z_v)), title('Vertical Scattered E-field') 
colorbar 
 
%imaginary plots 
[x,y] = meshgrid([1:50]); 
Z_h = E_clutter(:,:,1); 
subplot(2,2,3), surf(x,y,imag(Z_h)), title('Imaginary Horizontal Scattered E-field') 
colorbar 
 
Z_v = E_clutter(:,:,2); 
subplot(2,2,4), surf(x,y,imag(Z_v)), title('Imaginary Vertical Scattered E-field') 
colorbar 
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B. SOURCE CODE FOR POLARIZATION OPTIMIZATION 
clear all 
t=1;              %counter 
 
%Target Scattering Matrices  
S=[2j,0.5;0.5,-j];                 % Arbitrary matrix from Ref [1]     
%S=[1,0;0,1];                       %Sphere 
%S=[1,0;0,-1];                      %Dihedral 
%S = [0,1;1,0];                     %dihedral at 45 deg  
 %S = [0.5,-j*0.5;-0.5,-j*0.5];                        %metallic helix   
 
%Transitional Matrices (From Ref [1]) 
C=0.5*[1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,-1];    %Produces the Co-pol Mueller 
X=0.5*[1,0,0,0;0,-1,0,0;0,0,-1,0;0,0,0,1];   %Produces the Crosspol Mueller 
A=[1,0,0,1;1,0,0,-1;0,1,1,0;0,j,-j,0];        %Kronecker expansion matrix 
 
 
for tilt=-0:2:180;                  %range of tilt angle 
tilt_rad=(tilt/180)*pi;             %convert tilt to radians 
e=1;                                %counter 
 
for ellip=-45:2:45;                 %range of ellipticity angle 
    ellip_rad=(ellip/180)*pi;      %convert to radian 
     
%Contruct the incident E-field based on the current tilt and ellipticity (From Ref 
[8]) 
 %To be used to generate the Stokes parameters 
    E_i=[cos(tilt_rad)*cos(ellip_rad)-
sin(tilt_rad)*(j*sin(ellip_rad));sin(tilt_rad)*cos(ellip_rad)+cos(tilt_rad)*(j*sin(ellip_ra
d))]; 
     
    %Contruct Mueller matrices from the current scattering matrix 
    %To be used for transforming incident Stokes parameters to backscattered 
ones  
    M =A*(kron(S,conj(S)))*inv(A);    %general Mueller 
    Mc=C*M;                            %Col-pol matrix 
    Mx=X*M;                            %Cross-pol matrix 
     
    %Contruct the Stoke Parameters from the incident E-field (From Ref [11]) 
    g0=abs(E_i(1,:)^2)+ abs(E_i(2,:)^2); 
    g1=abs(E_i(1,:)^2)- abs(E_i(2,:)^2); 
    g2=(abs(E_i(1,:)^2)- abs(E_i(2,:)^2))*tan(2*tilt_rad); 
    g3=(abs(E_i(1,:)^2)+ abs(E_i(2,:)^2))*sin(2*ellip_rad); 
    gt=[g0;g1;g2;g3]; 
     
    %Derived the backscattered Stokes using the Mueller on the incident Stokes  
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    %Deriving the cross pol and copol powers 
    power_col=transpose(gt)*Mc*gt/norm(gt,'fro'); 
    power_cross=transpose(gt)*Mx*gt/norm(gt,'fro'); 
    Pc(e,t)=power_col;                  %data stored as array 
    Px(e,t)=power_cross;                %data stored as array 
    e=e+1;                               %counter     
end 
 
t=t+1;                                   %counter 
end 
 
%Plots 
a=-0:2:180; 
b=-45:2:45; 
[X,Y] = meshgrid([-0:2:180],[-45:2:45]); 
subplot(2,2,1),surf(X,Y,Pc), title('Pcol'),xlabel('tilt (deg)'),ylabel('ellip (deg)') 
subplot(2,2,2),imagesc(a,b,Pc), title('Pcol'),xlabel('tilt (deg)'),ylabel('ellip (deg)') 
colorbar 
subplot(2,2,3),surf(X,Y,Px), title('Pcross'),xlabel('tilt (deg)'),ylabel('ellip (deg)') 
subplot(2,2,4),imagesc(a,b,Px), title('Pcross'),xlabel('tilt (deg)'),ylabel('ellip (deg)') 
colorbar 
 
% Readout of values 
[A,B]=find(Px==(max(max(Px))))     %find ellip & tilt where 
maxima occurs 
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